login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303757
a(1) = 1 and for n > 1, a(n) = number of values of k, 2 <= k <= n, with A000010(k) = A000010(n), where A000010 is Euler totient function phi.
7
1, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 1, 2, 1, 4, 1, 3, 2, 2, 1, 4, 1, 3, 2, 4, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 4, 1, 4, 1, 4, 2, 5, 2, 2, 1, 6, 1, 2, 3, 2, 1, 5, 1, 3, 1, 6, 1, 7, 1, 4, 3, 5, 2, 8, 1, 4, 1, 4, 1, 9, 1, 3, 1, 5, 1, 10, 2, 2, 3, 2, 3, 5, 1, 4, 4, 6, 1, 6, 1, 2, 3
OFFSET
1,4
COMMENTS
Ordinal transform of f, where f(1) = 0 and f(n) = A000010(n) for n > 1.
After a(1)=1 and a(4)=2, the positions of the rest of records is given by A081375(n) = 6, 12, 30, 42, 72, 78, 84, 90, 190, ..., for n >= 3.
Apart from a(2) = 1, the other positions of 1's is given by A210719.
LINKS
FORMULA
Except for a(2) = 1, a(n) = A081373(n).
MATHEMATICA
With[{s = EulerPhi@ Range@ 105}, MapAt[# + 1 &, Table[Count[s[[2 ;; n]], _?(# == s[[n]] &)], {n, Length@ s}], 1]] (* Michael De Vlieger, Nov 23 2018 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
Aux303757(n) = if(1==n, 0, eulerphi(n));
v303757 = ordinal_transform(vector(up_to, n, Aux303757(n)));
A303757(n) = v303757[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 30 2018
STATUS
approved