Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Nov 24 2018 01:28:39
%S 1,1,1,2,1,3,1,2,2,3,1,4,1,3,1,2,1,4,1,3,2,2,1,4,1,3,2,4,1,5,1,2,2,3,
%T 1,5,1,3,2,4,1,6,1,3,3,2,1,5,2,4,1,4,1,4,2,5,2,2,1,6,1,2,3,2,1,5,1,3,
%U 1,6,1,7,1,4,3,5,2,8,1,4,1,4,1,9,1,3,1,5,1,10,2,2,3,2,3,5,1,4,4,6,1,6,1,2,3
%N a(1) = 1 and for n > 1, a(n) = number of values of k, 2 <= k <= n, with A000010(k) = A000010(n), where A000010 is Euler totient function phi.
%C Ordinal transform of f, where f(1) = 0 and f(n) = A000010(n) for n > 1.
%C After a(1)=1 and a(4)=2, the positions of the rest of records is given by A081375(n) = 6, 12, 30, 42, 72, 78, 84, 90, 190, ..., for n >= 3.
%C Apart from a(2) = 1, the other positions of 1's is given by A210719.
%H Antti Karttunen, <a href="/A303757/b303757.txt">Table of n, a(n) for n = 1..65537</a>
%F Except for a(2) = 1, a(n) = A081373(n).
%t With[{s = EulerPhi@ Range@ 105}, MapAt[# + 1 &, Table[Count[s[[2 ;; n]], _?(# == s[[n]] &)], {n, Length@ s}], 1]] (* _Michael De Vlieger_, Nov 23 2018 *)
%o (PARI)
%o up_to = 65537;
%o ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o Aux303757(n) = if(1==n,0,eulerphi(n));
%o v303757 = ordinal_transform(vector(up_to,n,Aux303757(n)));
%o A303757(n) = v303757[n];
%Y Cf. A000010, A081373, A081375, A210719, A303754, A303758, A303777.
%K nonn
%O 1,4
%A _Antti Karttunen_, Apr 30 2018