OFFSET
0,2
COMMENTS
Each a(n+1) is either a divisor or a multiple of a(n).
The primorials (A002110) occur in ascending order, in positions given by A300829, and each is then followed by the least unused term up to that point. For n = 2 .. 79 this is the highest prime factor of the said primorial, but note that for A300829(80) = 4965, a(4965) = A002110(80), but a(4966) = 407 = 11*37, instead of prime(80) = 409. Note that 409 occurs at a(5043), where 5043 = 1+A300829(81).
For example, 11 comes after a(A300829(5)) = a(12) = 2310 = 2*3*5*7*11, and all squarefree numbers < 11: {1, 2, 3, 5, 6, 7, 10} occur before a(13).
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..4095
FORMULA
PROG
(PARI)
default(parisizemax, 2^31);
up_to = 2^8;
v303761 = vector(up_to);
m_inverses = Map();
prev=1; for(n=1, up_to, fordiv(prev, d, if(!mapisdefined(m_inverses, d), v303761[n] = d; mapput(m_inverses, d, n); break)); if(!v303761[n], while(mapisdefined(m_inverses, prev), prev *= A053669(prev)); v303761[n] = prev; mapput(m_inverses, prev, n)); prev = v303761[n]);
A303761(n) = v303761[n+1];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 02 2018
STATUS
approved