login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303761
Divisor-or-multiple permutation of squarefree numbers: a(0) = 1, and for n >= 1, a(n) is either the least divisor of a(n-1) not already present, or (if all divisors already used), a(n) is obtained by iterating the map x -> x*A053669(x), starting from x = a(n-1), until x is found which is not already present in the sequence.
7
1, 2, 6, 3, 30, 5, 10, 210, 7, 14, 42, 21, 2310, 11, 22, 66, 33, 330, 15, 30030, 13, 26, 78, 39, 390, 65, 130, 2730, 35, 70, 510510, 17, 34, 102, 51, 510, 85, 170, 3570, 105, 9699690, 19, 38, 114, 57, 570, 95, 190, 3990, 133, 266, 798, 399, 43890, 55, 110, 223092870, 23, 46, 138, 69, 690, 115, 230, 4830, 161, 322, 966, 483, 53130, 77
OFFSET
0,2
COMMENTS
Each a(n+1) is either a divisor or a multiple of a(n).
The primorials (A002110) occur in ascending order, in positions given by A300829, and each is then followed by the least unused term up to that point. For n = 2 .. 79 this is the highest prime factor of the said primorial, but note that for A300829(80) = 4965, a(4965) = A002110(80), but a(4966) = 407 = 11*37, instead of prime(80) = 409. Note that 409 occurs at a(5043), where 5043 = 1+A300829(81).
For example, 11 comes after a(A300829(5)) = a(12) = 2310 = 2*3*5*7*11, and all squarefree numbers < 11: {1, 2, 3, 5, 6, 7, 10} occur before a(13).
LINKS
FORMULA
a(n) = A019565(A303765(n)).
For n >= 0, a(A300829(n)) = A002110(n) [primorials are the records].
For n = 2 .. 79, a(1+A300829(n)) = A000040(n).
PROG
(PARI)
default(parisizemax, 2^31);
up_to = 2^8;
A053669(n) = forprime(p=2, , if (n % p, return(p))); \\ From A053669
v303761 = vector(up_to);
m_inverses = Map();
prev=1; for(n=1, up_to, fordiv(prev, d, if(!mapisdefined(m_inverses, d), v303761[n] = d; mapput(m_inverses, d, n); break)); if(!v303761[n], while(mapisdefined(m_inverses, prev), prev *= A053669(prev)); v303761[n] = prev; mapput(m_inverses, prev, n)); prev = v303761[n]);
A303761(n) = v303761[n+1];
CROSSREFS
Cf. A005117, A019565, A053669, A300829 (gives the positions of records), A303765.
Cf. also A303751, A303760, A303762.
Sequence in context: A248120 A144362 A376413 * A283478 A125666 A371799
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 02 2018
STATUS
approved