login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302789
Number of times the largest Fermi-Dirac factor of n is the largest Fermi-Dirac factor for numbers <= n; a(1) = 1.
7
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 3, 4, 1, 5, 1, 2, 3, 2, 5, 4, 1, 2, 3, 6, 1, 6, 1, 4, 5, 2, 1, 3, 1, 2, 3, 4, 1, 6, 5, 7, 3, 2, 1, 7, 1, 2, 7, 4, 5, 6, 1, 4, 3, 8, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 1, 2, 1, 9, 5, 2, 3, 8, 1, 9, 7, 4, 3, 2, 5, 6, 1, 2, 9, 4, 1, 6, 1, 8, 10
OFFSET
1,6
COMMENTS
Ordinal transform of A223491, or equally, of A302785.
LINKS
MATHEMATICA
f[n_] := Max@Table[{p, e} = pe; p^(2^(Length[IntegerDigits[e, 2]]-1)), {pe, FactorInteger[n]}];
b[_] = 1;
a[n_] := a[n] = With[{t = f[n]}, b[t]++];
Array[a, 105] (* Jean-François Alcover, Dec 18 2021 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
ispow2(n) = (n && !bitand(n, n-1));
A223491(n) = if(1==n, n, fordiv(n, d, if(ispow2(isprimepower(n/d)), return(n/d))));
v302789 = ordinal_transform(vector(up_to, n, A223491(n)));
A302789(n) = v302789[n];
CROSSREFS
Cf. A084400 (gives the positions of 1's).
Cf. also A078899.
Sequence in context: A337176 A033103 A245661 * A346089 A302776 A366510
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 13 2018
STATUS
approved