Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 18 2021 08:06:36
%S 1,1,1,1,1,2,1,2,1,2,1,3,1,2,3,1,1,2,1,4,3,2,1,4,1,2,3,4,1,5,1,2,3,2,
%T 5,4,1,2,3,6,1,6,1,4,5,2,1,3,1,2,3,4,1,6,5,7,3,2,1,7,1,2,7,4,5,6,1,4,
%U 3,8,1,8,1,2,3,4,7,6,1,5,1,2,1,9,5,2,3,8,1,9,7,4,3,2,5,6,1,2,9,4,1,6,1,8,10
%N Number of times the largest Fermi-Dirac factor of n is the largest Fermi-Dirac factor for numbers <= n; a(1) = 1.
%C Ordinal transform of A223491, or equally, of A302785.
%H Antti Karttunen, <a href="/A302789/b302789.txt">Table of n, a(n) for n = 1..65537</a>
%t f[n_] := Max@Table[{p, e} = pe; p^(2^(Length[IntegerDigits[e, 2]]-1)), {pe, FactorInteger[n]}];
%t b[_] = 1;
%t a[n_] := a[n] = With[{t = f[n]}, b[t]++];
%t Array[a, 105] (* _Jean-François Alcover_, Dec 18 2021 *)
%o (PARI)
%o up_to = 65537;
%o ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o ispow2(n) = (n && !bitand(n, n-1));
%o A223491(n) = if(1==n,n,fordiv(n, d, if(ispow2(isprimepower(n/d)), return(n/d))));
%o v302789 = ordinal_transform(vector(up_to,n,A223491(n)));
%o A302789(n) = v302789[n];
%Y Cf. A050376, A052331, A223491, A302785, A302788.
%Y Cf. A084400 (gives the positions of 1's).
%Y Cf. also A078899.
%K nonn
%O 1,6
%A _Antti Karttunen_, Apr 13 2018