OFFSET
1,6
COMMENTS
The positive integers that are absent from this sequence are A036554, integers that have 2 as a Fermi-Dirac factor. - Peter Munn, Apr 23 2018
a(n) is the largest aliquot infinitary divisor of n, for n > 1 (cf. A077609). - Amiram Eldar, Nov 19 2022
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
MATHEMATICA
f[p_, e_] := p^(2^IntegerExponent[e, 2]); a[n_] := n / Min @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 27 2020 *)
PROG
(PARI)
up_to = 65537;
v050376 = vector(up_to);
A050376(n) = v050376[n];
ispow2(n) = (n && !bitand(n, n-1));
i = 0; for(n=1, oo, if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to, break));
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A001511(n) = 1+valuation(n, 2);
(PARI) a(n) = {if(n==1, 1, my(f = factor(n)); for(i=1, #f~, f[i, 1] = f[i, 1]^(1<<valuation(f[i, 2], 2))); n/vecmin(f[, 1])); } \\ Amiram Eldar, Nov 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 13 2018
STATUS
approved