login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324542
Möbius transform of A324118, where A324118(n) = A000593(A156552(n)).
6
0, 1, 1, 3, 1, 4, 1, 4, 3, 11, 1, 3, 1, 16, 4, 16, 1, 5, 1, 4, 11, 46, 1, 8, 3, 82, 4, 27, 1, 10, 1, 8, 16, 174, 4, 20, 1, 256, 46, 32, 1, 4, 1, 17, 3, 798, 1, 8, 3, 15, 82, 45, 1, 12, 11, 20, 174, 1300, 1, 2, 1, 2734, 4, 72, 16, 27, 1, 125, 256, 8, 1, 20, 1, 4354, 5, 363, 4, 25, 1, 8, 16, 10926, 1, 53, 46, 20518, 798, 168, 1, 35, 11, 317
OFFSET
1,4
COMMENTS
The first three zeros after a(1) occur at n = 192, 288, 3645.
The first negative term is a(150) = -1. There are 184 negative terms among the first 4473 terms.
FORMULA
a(n) = Sum_{d|n} A008683(n/d) * A324118(d).
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
A322993(n) = A156552(2*A246277(n));
memoA324118 = Map();
A324118(n) = if(1==n, 0, my(v); if(mapisdefined(memoA324118, n, &v), v, v=sigma(A322993(n)); mapput(memoA324118, n, v); (v)));
A324542(n) = sumdiv(n, d, moebius(n/d)*A324118(d));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Mar 07 2019
STATUS
approved