login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324545
An analog of sigma (A000203) for nonstandard factorization based on the sieve of Eratosthenes (A083221).
6
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 40, 36, 24, 60, 31, 42, 32, 56, 30, 72, 32, 63, 78, 54, 48, 91, 38, 60, 48, 90, 42, 120, 44, 84, 121, 72, 48, 124, 57, 93, 124, 98, 54, 96, 156, 120, 104, 90, 60, 168, 62, 96, 56, 127, 72, 234, 68, 126, 240, 144, 72, 195, 74, 114, 72, 140, 96, 144, 80
OFFSET
1,2
FORMULA
a(n) = A000203(A250246(n)) = A324535(n) + A250246(n).
a(1) = 1; for n > 1, let p = A020639(n) [the smallest prime factor of n], then a(n) = (((p^(1+A302045(n)))-1) / (p-1)) * a(A302044(n)).
a(n) = A324054(A252754(n)).
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
A055396(n) = if(1==n, 0, primepi(A020639(n)));
v078898 = ordinal_transform(vector(up_to, n, A020639(n)));
A078898(n) = v078898[n];
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A250246(n) = if(1==n, n, my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
A324545(n) = sigma(A250246(n));
(PARI)
\\ Or alternatively, using also A078898 defined above:
A000265(n) = (n/2^valuation(n, 2));
A001511(n) = 1+valuation(n, 2);
A302044(n) = { my(c = A000265(A078898(n))); if(1==c, 1, my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p), d -= 1)); (k*p)); };
A324545(n) = if(1==n, n, my(p=A020639(n)); (((p^(A302045(n)+1))-1)/(p-1))*A324545(A302044(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 06 2019
STATUS
approved