OFFSET
1,3
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
FORMULA
MATHEMATICA
Array[If[# == 0, 0, DivisorSigma[1, #]] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &, 75] (* Michael De Vlieger, Apr 21 2019 *)
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
(PARI)
\\ For computing terms a(n), with n > ~4000 use Hans Havermann's factorization file https://oeis.org/A156552/a156552.txt
v156552sigs = readvec("a156552.txt"); \\ First read it in as a PARI-vector.
A323243(n) = if(n<=2, n-1, my(prsig=v156552sigs[n], ps=prsig[1], es=prsig[2]); prod(i=1, #ps, ((ps[i]^(1+es[i]))-1)/(ps[i]-1))); \\ Then play sigma
\\ Antti Karttunen, Mar 15 2019
(Python)
from sympy import divisor_sigma, primepi, factorint
def A323243(n): return divisor_sigma(sum((1<<primepi(p)-1)<<i for i, p in enumerate(factorint(n, multiple=True)))) if n > 1 else 0 # Chai Wah Wu, Mar 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 10 2019
STATUS
approved