login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A323243 a(1) = 0; for n > 1, a(n) = A000203(A156552(n)). 77
0, 1, 3, 4, 7, 6, 15, 8, 12, 13, 31, 12, 63, 18, 18, 24, 127, 14, 255, 20, 39, 48, 511, 24, 28, 84, 24, 48, 1023, 32, 2047, 32, 54, 176, 42, 40, 4095, 258, 144, 56, 8191, 38, 16383, 68, 36, 800, 32767, 48, 60, 31, 252, 132, 65535, 30, 91, 72, 528, 1302, 131071, 44, 262143, 2736, 60, 104, 126, 96, 524287, 304, 774, 42, 1048575, 72, 2097151, 4356, 42 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)

Index entries for sequences related to binary expansion of n

Index entries for sequences computed from indices in prime factorization

Index entries for sequences related to sigma(n)

FORMULA

a(1) = 0; for n > 1, a(n) = A000203(A156552(n)).

a(n) = 2*A156552(n) - A323244(n).

a(n) = A323247(n) - A323248(n).

From Antti Karttunen, Mar 12 2019: (Start)

a(A000040(n)) = A000225(n).

a(n) = Sum_{d|n} A324543(d).

For n > 1, a(2*A246277(n)) = A324118(n).

gcd(a(n), A156552(n)) = A324396(n).

A000035(a(n)) = A324823(n).

(End)

MATHEMATICA

Array[If[# == 0, 0, DivisorSigma[1, #]] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &, 75] (* Michael De Vlieger, Apr 21 2019 *)

PROG

(PARI)

A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};

A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));

A323243(n) = if(1==n, 0, sigma(A156552(n)));

(PARI)

\\ For computing terms a(n), with n > ~4000 use Hans Havermann's factorization file https://oeis.org/A156552/a156552.txt

v156552sigs = readvec("a156552.txt"); \\ First read it in as a PARI-vector.

A323243(n) = if(n<=2, n-1, my(prsig=v156552sigs[n], ps=prsig[1], es=prsig[2]); prod(i=1, #ps, ((ps[i]^(1+es[i]))-1)/(ps[i]-1))); \\ Then play sigma

\\ Antti Karttunen, Mar 15 2019

CROSSREFS

Cf. A000203, A156552, A323244, A323247, A323248, A324118, A324543 (Möbius transform), A324396, A324823.

Cf. A323173, A324054, A324184, A324545 for other permutations of sigma, and also A324573, A324653.

Sequence in context: A053480 A258052 A241448 * A244974 A077580 A069213

Adjacent sequences:  A323240 A323241 A323242 * A323244 A323245 A323246

KEYWORD

nonn

AUTHOR

Antti Karttunen, Jan 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:29 EST 2019. Contains 329910 sequences. (Running on oeis4.)