login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A324823
a(n) = 1 if n > 1 and A156552(n) is a square or a twice a square, 0 otherwise.
9
0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
FORMULA
a(n) = A323243(n) mod 2.
For n > 1, a(n) = A053866(A156552(n)).
PROG
(PARI)
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth
A324823(n) = if(1==n, 0, n=A156552(n); (issquare(n) || (!(n%2) && issquare(n/2))));
CROSSREFS
Characteristic function (for n > 1) of A324813.
Cf. A053866, A156552, A323243, A324822, A324824, A324825 (inverse Möbius transform).
Sequence in context: A379728 A343173 A285255 * A353354 A284912 A192082
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 16 2019
STATUS
approved