login
A324826
Number of divisors d of n such that A323243(d) is either 0 or 1 (mod 4).
3
1, 2, 1, 3, 1, 2, 1, 4, 2, 3, 1, 4, 1, 2, 1, 5, 1, 3, 1, 5, 1, 3, 1, 6, 2, 3, 3, 4, 1, 4, 1, 6, 1, 3, 1, 6, 1, 2, 2, 7, 1, 2, 1, 5, 3, 3, 1, 8, 2, 4, 2, 5, 1, 4, 1, 6, 2, 2, 1, 8, 1, 3, 3, 7, 1, 4, 1, 5, 1, 3, 1, 9, 1, 3, 2, 4, 1, 5, 1, 9, 4, 3, 1, 6, 2, 3, 2, 7, 1, 6, 1, 5, 1, 3, 2, 10, 1, 4, 3, 7, 1, 4, 1, 7, 2
OFFSET
1,2
FORMULA
a(n) = A000005(n) - A324827(n).
a(p) = 1 for all odd primes p.
PROG
(PARI) A324826(n) = sumdiv(n, d, ((A323243(d)%4)<2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 16 2019
STATUS
approved