login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A324825
Number of divisors d of n such that A323243(d) is odd; number of terms of A324813 larger than 1 that divide n.
6
0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 3, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 1, 2, 1, 4, 2, 2, 1, 2, 3, 2, 2, 2, 1, 4, 1, 2, 3, 1, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1, 2, 1, 4, 2, 2, 2, 2, 1, 4, 3, 2, 2, 2, 2, 2, 1, 3, 2, 4, 1, 3, 1, 2, 4
OFFSET
1,6
COMMENTS
Inverse Möbius transform of A324823.
FORMULA
a(n) = Sum_{d|n} A324823(d).
a(p^k) = 1, for all primes p and exponents k >= 1.
PROG
(PARI)
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth
A324823(n) = if(1==n, 0, n=A156552(n); (issquare(n) || (!(n%2) && issquare(n/2))));
A324825(n) = sumdiv(n, d, A324823(d));
(PARI) A324825(n) = sumdiv(n, d, A323243(d)%2); \\ This needs code also from A323243.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 16 2019
STATUS
approved