login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316557
Number of distinct integer averages of subsets of the integer partition with Heinz number n.
4
0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 3, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 2, 3, 2, 2, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 2, 1, 3, 2, 2, 1, 2, 3, 3, 3, 2, 1, 3, 1, 3, 3, 1, 2, 4, 1, 4, 2, 4, 1, 2, 1, 2, 2, 2, 2, 5, 1, 3, 1, 3, 1, 4, 3, 2, 3, 4, 1, 3, 3, 3, 2, 3, 2, 2, 1, 3, 3, 3, 1, 4, 1, 2, 3
OFFSET
1,6
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
FORMULA
a(n) <= A316314(n). - Antti Karttunen, Sep 25 2018
EXAMPLE
The a(78) = 5 distinct integer averages of subsets of (6,2,1) are {1, 2, 3, 4, 6}.
MATHEMATICA
Table[Length[Select[Union[Mean/@Subsets[If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], IntegerQ]], {n, 100}]
PROG
(PARI)
up_to = 65537;
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
v056239 = vector(up_to, n, A056239(n));
A316557(n) = { my(m=Map(), s, k=0); fordiv(n, d, if((d>1)&&(1==denominator(s = v056239[d]/bigomega(d)))&&!mapisdefined(m, s), mapput(m, s, s); k++)); (k); }; \\ Antti Karttunen, Sep 25 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 06 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 25 2018
STATUS
approved