login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316556
Number of distinct LCMs of nonempty submultisets of the integer partition with Heinz number n.
7
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 3, 2, 3, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 3, 4, 1, 2, 1, 2, 3, 2, 3, 3, 1, 2, 1, 2, 1, 3, 3, 2, 2, 2, 1, 4, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 4, 1, 2, 5
OFFSET
1,6
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number of distinct values obtained when A290103 is applied to all divisors of n larger than one. - Antti Karttunen, Sep 25 2018
LINKS
EXAMPLE
462 is the Heinz number of (5,4,2,1) which has possible LCMs of nonempty submultisets {1,2,4,5,10,20} so a(462) = 6.
MATHEMATICA
Table[Length[Union[LCM@@@Rest[Subsets[If[n==1, {}, Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]]]]]]], {n, 100}]
PROG
(PARI)
A290103(n) = lcm(apply(p->primepi(p), factor(n)[, 1]));
A316556(n) = { my(m=Map(), s, k=0); fordiv(n, d, if((d>1)&&!mapisdefined(m, s=A290103(d)), mapput(m, s, s); k++)); (k); }; \\ Antti Karttunen, Sep 25 2018
CROSSREFS
Cf. also A304793, A305611, A319685, A319695 for other similarly constructed sequences.
Sequence in context: A330746 A316555 A337531 * A187279 A076820 A206824
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 06 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 25 2018
STATUS
approved