OFFSET
1,4
COMMENTS
A positive integer n is a positive subset-sum of an integer partition y if there exists a submultiset of y with sum n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
a(n) <= A000005(n).
One less than the number of distinct values obtained when A056239 is applied to all divisors of n. - Antti Karttunen, Jul 01 2018
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
EXAMPLE
The positive subset-sums of (4,3,1) are {1, 3, 4, 5, 7, 8} so a(70) = 6.
The positive subset-sums of (5,1,1,1) are {1, 2, 3, 5, 6, 7, 8} so a(88) = 7.
MATHEMATICA
Table[Length[Union[Total/@Rest[Subsets[Join@@Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], {n, 100}]
PROG
(PARI)
up_to = 65537;
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
v056239 = vector(up_to, n, A056239(n));
A304793(n) = { my(m=Map(), s, k=0); fordiv(n, d, if(!mapisdefined(m, s = v056239[d]), mapput(m, s, s); k++)); (k-1); }; \\ Antti Karttunen, Jul 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 18 2018
EXTENSIONS
More terms from Antti Karttunen, Jul 01 2018
STATUS
approved