login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304793
Number of distinct positive subset-sums of the integer partition with Heinz number n.
35
0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 5, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 6, 1, 3, 3, 6, 1, 7, 1, 5, 5, 3, 1, 6, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 7, 1, 3, 4, 6, 3, 7, 1, 5, 3, 6, 1, 7, 1, 3, 5, 5, 3, 7, 1, 7, 4, 3, 1, 8, 3, 3, 3, 7, 1, 8, 3, 5, 3, 3, 3, 7, 1, 5, 5, 8, 1, 7, 1, 7, 7
OFFSET
1,4
COMMENTS
A positive integer n is a positive subset-sum of an integer partition y if there exists a submultiset of y with sum n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
a(n) <= A000005(n).
One less than the number of distinct values obtained when A056239 is applied to all divisors of n. - Antti Karttunen, Jul 01 2018
LINKS
EXAMPLE
The positive subset-sums of (4,3,1) are {1, 3, 4, 5, 7, 8} so a(70) = 6.
The positive subset-sums of (5,1,1,1) are {1, 2, 3, 5, 6, 7, 8} so a(88) = 7.
MATHEMATICA
Table[Length[Union[Total/@Rest[Subsets[Join@@Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], {n, 100}]
PROG
(PARI)
up_to = 65537;
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
v056239 = vector(up_to, n, A056239(n));
A304793(n) = { my(m=Map(), s, k=0); fordiv(n, d, if(!mapisdefined(m, s = v056239[d]), mapput(m, s, s); k++)); (k-1); }; \\ Antti Karttunen, Jul 01 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 18 2018
EXTENSIONS
More terms from Antti Karttunen, Jul 01 2018
STATUS
approved