login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301855
Number of divisors d|n such that no other divisor of n has the same Heinz weight A056239(d).
13
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 4, 6, 2, 6, 2, 6, 4, 4, 4, 5, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 4, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 4, 2, 4, 4, 7, 4, 8, 2, 6, 4, 6, 2, 4, 2, 4, 6, 6, 4, 8, 2, 6, 5, 4, 2, 6, 4, 4, 4, 8, 2, 6, 4, 6, 4, 4, 4, 4, 2, 6, 6, 9, 2, 8, 2, 8, 8
OFFSET
1,2
LINKS
EXAMPLE
The a(24) = 4 special divisors are 1, 2, 12, 24.
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
uqsubs[y_]:=Join@@Select[GatherBy[Union[Subsets[y]], Total], Length[#]===1&];
Table[Length[uqsubs[primeMS[n]]], {n, 100}]
PROG
(PARI)
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
A301855(n) = if(1==n, n, my(m=Map(), w, s); fordiv(n, d, w = A056239(d); if(!mapisdefined(m, w, &s), mapput(m, w, Set([d])), mapput(m, w, setunion(Set([d]), s)))); sumdiv(n, d, (1==length(mapget(m, A056239(d)))))); \\ Antti Karttunen, Jul 01 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 27 2018
EXTENSIONS
More terms from Antti Karttunen, Jul 01 2018
STATUS
approved