login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299729 Heinz numbers of non-knapsack partitions. 34
12, 24, 30, 36, 40, 48, 60, 63, 70, 72, 80, 84, 90, 96, 108, 112, 120, 126, 132, 140, 144, 150, 154, 156, 160, 165, 168, 180, 189, 192, 198, 200, 204, 210, 216, 220, 224, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 320, 324, 325 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
An integer partition is non-knapsack if there exist two different submultisets with the same sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
EXAMPLE
12 is the Heinz number of (2,1,1) which is not knapsack because 2 = 1 + 1.
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], !UnsameQ@@Plus@@@Union[Rest@Subsets[primeMS[#]]]&]
CROSSREFS
Sequence in context: A334760 A098714 A334758 * A325777 A364532 A350056
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 17 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 13:23 EDT 2024. Contains 375938 sequences. (Running on oeis4.)