login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327527
Number of uniform divisors of n.
28
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 5, 2, 5, 4, 4, 2, 6, 3, 4, 4, 5, 2, 8, 2, 6, 4, 4, 4, 7, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 9, 2, 4, 5, 7, 4, 8, 2, 5, 4, 8, 2, 8, 2, 4, 5, 5, 4, 8, 2, 7, 5, 4, 2, 9, 4, 4, 4, 6, 2, 9, 4, 5, 4, 4, 4, 8, 2, 5, 5, 7, 2, 8, 2, 6, 8
OFFSET
1,2
COMMENTS
A number is uniform if its prime multiplicities are all equal, meaning it is a power of a squarefree number. Uniform numbers are listed in A072774. The maximum uniform divisor of n is A327526(n).
FORMULA
From Amiram Eldar, Dec 19 2023: (Start)
a(n) = A034444(n) + A368251(n).
Sum_{k=1..n} a(k) ~ (n/zeta(2)) * (log(n) + 2*gamma - 1 - 2*zeta'(2)/zeta(2) + c * zeta(2)), where gamma is Euler's constant (A001620) and c = A368250. (End)
EXAMPLE
The uniform divisors of 40 are {1, 2, 4, 5, 8, 10}, so a(40) = 6.
MATHEMATICA
Table[Length[Select[Divisors[n], SameQ@@Last/@FactorInteger[#]&]], {n, 100}]
a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, 1 + Total[2^Accumulate[Count[e, #] & /@ Range[Max[e], 1, -1]] - 1]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Dec 19 2023 *)
PROG
(PARI)
isA072774(n) = { ispower(n, , &n); issquarefree(n); }; \\ From A072774
A327527(n) = sumdiv(n, d, isA072774(d)); \\ Antti Karttunen, Nov 13 2021
CROSSREFS
See link for additional cross-references.
Sequence in context: A301855 A080256 A351394 * A337454 A289849 A299701
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2019
EXTENSIONS
Data section extended up to 105 terms by Antti Karttunen, Nov 13 2021
STATUS
approved