login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A327528
Quotient of n over the maximum uniform divisor of n.
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1
OFFSET
1,12
COMMENTS
Requires A071625(n) steps to reach 1, the only fixed point.
A number is uniform if its prime multiplicities are all equal, meaning it is a power of a squarefree number. Uniform numbers are listed in A072774. The maximum uniform divisor of n is A327526(n).
FORMULA
a(n) = n / A327526(n). - Amiram Eldar, Dec 19 2023
EXAMPLE
The uniform divisors of 40 are {1, 2, 4, 5, 8, 10}, so a(40) = 40/10 = 4.
MATHEMATICA
Table[n/Max[Select[Divisors[n], SameQ@@Last/@FactorInteger[#]&]], {n, 100}]
a[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; n / Max@ Table[(Times @@ p[[Position[e, _?(# >= k &)] // Flatten]])^k, {k, Union[e]}]]; Array[a, 100] (* Amiram Eldar, Dec 19 2023 *)
CROSSREFS
See link for additional cross-references.
Sequence in context: A030612 A378660 A371921 * A264857 A370645 A340596
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2019
STATUS
approved