login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371921
The number of iterations of the map x -> A033880(x) starting at n until the a nonpositive number is reached, or 0 if this does not happen.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1
OFFSET
1,12
COMMENTS
Analogous to A098007 with A033880(n) = sigma(n) - 2*n instead of A001065(n) = sigma(n) - n.
LINKS
FORMULA
a(n) = 1 if and only if n is nonabundant (A263837).
If a(n) > 0 then:
a(n) > 1 if n is abundant (A005101).
a(n) > 2 if n is in A371920.
EXAMPLE
a(n) = 0 if the iterations that start at n are entering a cycle. Examples of cycles are:
1) Cycles of length 1: the triperfect numbers (A005820), 120, 672, 523776, ..., which are the fixed points of A033880. The triperfect numbers can be reached from other values of n, e.g., 276, 448, 486, 510, 702, ... .
2) Cycles of length 2: the only known cycle is (45840, 51168) (see A069085). It can be reached from other values of n, e.g., 32130, 39420, 45480, 66300, ... .
3) Cycles of length 3: the least cycle is (243732672, 271303776, 256786848). It is first reached from n = 107689320.
4) Cycles of length 4: the least cycle is (65071776, 82842816, 89761152, 77260656). It can be reached from other values of n, e.g., 33623940, 41132280, 42825888, ... . The next cycle of length 4 is (985948800, 1381340160, 2183133696, 1489384608).
MATHEMATICA
ab[n_] := Module[{k}, If[n < 1, 0, k = DivisorSigma[1, n] - 2*n; If[k < 1, 0, k]]]; a[n_] := Module[{s = NestWhileList[ab, n, UnsameQ, All]}, If[s[[-1]] == 0, Length[s] - 2, 0]]; Array[a, 120]
PROG
(PARI) ab(n) = {my(k); if(n < 1, 0, k = sigma(n) - 2*n; if(k < 1, 0, k)); }
a(n) = {my(t = 0); until(bittest(t, n = ab(n)), t += 1<<n); if(n == 0, hammingweight(t) - 1, 0); } \\ after M. F. Hasler at A098007
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Apr 12 2024
STATUS
approved