login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327524
Number of factorizations of the n-th uniform number A072774(n) into uniform numbers > 1.
2
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 1, 2, 2, 5, 1, 1, 2, 2, 1, 2, 2, 3, 1, 5, 1, 7, 2, 2, 2, 7, 1, 2, 2, 1, 5, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 11, 2, 5, 1, 2, 5, 1, 1, 2, 2, 5, 1, 5, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 7, 1, 5, 1, 5, 2, 1, 1, 5, 2, 1, 5, 2, 2, 2
OFFSET
1,4
COMMENTS
A number is uniform if its prime multiplicities are all equal, meaning it is a power of a squarefree number. Uniform numbers are listed in A072774.
EXAMPLE
The a(31) = 7 factorizations of 36 into uniform numbers together with the corresponding multiset partitions of {1,1,2,2}:
(2*2*3*3) {{1},{1},{2},{2}}
(2*2*9) {{1},{1},{2,2}}
(2*3*6) {{1},{2},{1,2}}
(3*3*4) {{2},{2},{1,1}}
(4*9) {{1,1},{2,2}}
(6*6) {{1,2},{1,2}}
(36) {{1,1,2,2}}
MATHEMATICA
nn=100;
facsusing[s_, n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facsusing[Select[s, Divisible[n/d, #]&], n/d], Min@@#>=d&]], {d, Select[s, Divisible[n, #]&]}]];
y=Select[Range[nn], SameQ@@Last/@FactorInteger[#]&];
Table[Length[facsusing[Rest[y], n]], {n, y}];
CROSSREFS
See link for additional cross-references.
Sequence in context: A332423 A256106 A077480 * A059829 A363369 A304465
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2019
STATUS
approved