OFFSET
1,4
COMMENTS
Note that in contrast to A056239 the factors i, j, ..., k in the sum are not the absolute indices (A000720) of those primes p_i, p_j, ..., p_k that divide n, but their relative order among all distinct primes dividing n, so that k = A001221(n). - Antti Karttunen, May 31 2017
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 0 (an empty sum).
a(10) = 3 as 10 = 2 * 5, therefore a(10) = 1*1 + 2*1 = 1+2 = 3.
a(45) = 4 as 45 = 3^2 * 5, therefore a(45) = 1*2 + 1*2 = 4.
a(50) = 5 as 50 = 2^1 * 5^2, therefore a(50) = 1*1 + 2*2 = 5.
a(250) = 7 as 250 = 2 * 5^3, therefore a(250) = 1*2 + 3*2 = 7.
PROG
(PARI) weightedroundness(n) = local(f, fl, s); f=factor(n); fl=length(f[, 1]); s=0; for (i=1, fl, s=s+i*f[, 2][i]); s alias(wr, weightedroundness) for (j=2, 500, print1(wr(j)", "))
(PARI) A079167(n) = { my(f, s); f=factor(n); s=0; for(i=1, #f~, s += (i*f[i, 2])); s; }; \\ Modified from the above function by Antti Karttunen, May 31 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Dec 31 2002
EXTENSIONS
a(1) = 0 prepended and more examples by Antti Karttunen, May 31 2017
STATUS
approved