login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079165
a(n) = (4n-2)*a(n-1)+a(n-2) with a(0)=1 and a(1)=2.
4
1, 2, 13, 132, 1861, 33630, 741721, 19318376, 580293001, 19749280410, 751052948581, 31563973120812, 1452693816505933, 72666254798417462, 3925430452931048881, 227747632524799252560, 14124278646990484707601
OFFSET
0,2
LINKS
FORMULA
a(n) = (A001517(n)+|A002119(n)|)/2 = A079166(2, n). a(n)/|A002119(n)| tends to 1.8591409...=(e+1)/2; a(n)/A001517(n) tends to 0.68393972...=2e/(e+1).
E.g.f.: cosh((1-sqrt(1-4*x))/2)/sqrt(1-4*x). - Vladimir Kruchinin, May 03 2016
a(n) = Sum_{k=0..n/2}((2*n-2*k)!/((n-2*k)!*(2*k)!)). - Vladimir Kruchinin, May 03 2016
a(n) = ((-1)^n*sqrt(Pi*exp(-1))*BesselI((2*n+1)/2, 1/2))/2 + (BesselK((2*n+1)/2, 1/2)*cosh(1/2))/sqrt(Pi), where BesselI(n,x) is the modified Bessel function of the first kind, BesselK(n,x) is the modified Bessel function of the second kind. - Ilya Gutkovskiy, May 03 2016
a(n) = (hypergeom([-n,n+1],[],-1)+(-1)^n*hypergeom([-n,n+1],[],1))/2. - Peter Luschny, May 03 2016
EXAMPLE
a(3) = (4*3-2)*a(2)+a(1) = 10*13+2 = 132.
MAPLE
f:= gfun:-rectoproc({a(n)=(4*n-2)*a(n-1)+a(n-2), a(0)=1, a(1)=2}, a(n), remember):
map(f, [$0..50]); # Robert Israel, May 03 2016
MATHEMATICA
a[n_] := Sum[(2n-2k)!/((n-2k)! (2k)!), {k, 0, n/2}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 10 2019, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=sum((2*n-2*k)!/((n-2*k)!*(2*k)!), k, 0, n/2); /* Vladimir Kruchinin, May 03 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Dec 31 2002
STATUS
approved