login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (4n-2)*a(n-1)+a(n-2) with a(0)=1 and a(1)=2.
4

%I #19 Apr 10 2019 08:35:06

%S 1,2,13,132,1861,33630,741721,19318376,580293001,19749280410,

%T 751052948581,31563973120812,1452693816505933,72666254798417462,

%U 3925430452931048881,227747632524799252560,14124278646990484707601

%N a(n) = (4n-2)*a(n-1)+a(n-2) with a(0)=1 and a(1)=2.

%H Robert Israel, <a href="/A079165/b079165.txt">Table of n, a(n) for n = 0..365</a>

%F a(n) = (A001517(n)+|A002119(n)|)/2 = A079166(2, n). a(n)/|A002119(n)| tends to 1.8591409...=(e+1)/2; a(n)/A001517(n) tends to 0.68393972...=2e/(e+1).

%F E.g.f.: cosh((1-sqrt(1-4*x))/2)/sqrt(1-4*x). - _Vladimir Kruchinin_, May 03 2016

%F a(n) = Sum_{k=0..n/2}((2*n-2*k)!/((n-2*k)!*(2*k)!)). - _Vladimir Kruchinin_, May 03 2016

%F a(n) = ((-1)^n*sqrt(Pi*exp(-1))*BesselI((2*n+1)/2, 1/2))/2 + (BesselK((2*n+1)/2, 1/2)*cosh(1/2))/sqrt(Pi), where BesselI(n,x) is the modified Bessel function of the first kind, BesselK(n,x) is the modified Bessel function of the second kind. - _Ilya Gutkovskiy_, May 03 2016

%F a(n) = (hypergeom([-n,n+1],[],-1)+(-1)^n*hypergeom([-n,n+1],[],1))/2. - _Peter Luschny_, May 03 2016

%e a(3) = (4*3-2)*a(2)+a(1) = 10*13+2 = 132.

%p f:= gfun:-rectoproc({a(n)=(4*n-2)*a(n-1)+a(n-2),a(0)=1,a(1)=2},a(n),remember):

%p map(f, [$0..50]); # _Robert Israel_, May 03 2016

%t a[n_] := Sum[(2n-2k)!/((n-2k)! (2k)!), {k, 0, n/2}];

%t Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Apr 10 2019, after _Vladimir Kruchinin_ *)

%o (Maxima)

%o a(n):=sum((2*n-2*k)!/((n-2*k)!*(2*k)!),k,0,n/2); /* _Vladimir Kruchinin_, May 03 2016 */

%Y Cf. A001517, A002119, A079166.

%K nonn

%O 0,2

%A _Henry Bottomley_, Dec 31 2002