login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223075
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A((2*n-1)*x)^n/n! * exp(-n*x*A((2*n-1)*x)).
1
1, 1, 2, 13, 132, 2492, 76726, 4048401, 360486616, 54950141846, 14338767268684, 6424397920197266, 4947731418324541980, 6554636080888858780850, 14947781374271898418583534, 58699996835841575449007944393, 397110307362512858324163841229032
OFFSET
0,3
COMMENTS
Compare to the LambertW identity:
Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)).
FORMULA
a(n) == 1 (mod 2) when n = 2^m-1 for m>=0, and a(n) == 0 (mod 2) otherwise.
EXAMPLE
O.g.f.: A(x) = 1 + x + 2*x^2 + 13*x^3 + 132*x^4 + 2492*x^5 + 76726*x^6 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^2*x^2*A(3*x)^2/2!*exp(-2*x*A(3*x)) + 3^3*x^3*A(5*x)^3/3!*exp(-3*x*A(5*x)) + 4^4*x^4*A(7*x)^4/4!*exp(-4*x*A(7*x)) + 5^5*x^5*A(9*x)^5/5!*exp(-5*x*A(9*x)) +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, k^k*x^k*subst(A, x, (2*k-1)*x)^k/k!*exp(-k*x*subst(A, x, (2*k-1)*x)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 14 2013
STATUS
approved