|
|
A079162
|
|
a(n) = 5a(n-2) - 2a(n-4).
|
|
2
|
|
|
0, 1, 2, 4, 10, 18, 46, 82, 210, 374, 958, 1706, 4370, 7782, 19934, 35498, 90930, 161926, 414782, 738634, 1892050, 3369318, 8630686, 15369322, 39369330, 70107974, 179585278, 319801226, 819187730, 1458790182, 3736768094
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
Also a(n) = a(n-1) + 2a(n-2) if n is odd, else a(n) = 2a(n-1) + a(n-2).
G.f.: x*(1+2*x-x^2)/(1-5*x^2+2*x^4).
a(n)=(1/68) * (-1)^n * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^(1/2) * n * sqrt(17)-(1/68) * [5/2-(1/2) * sqrt(17)]^(-1/4) * (-1)^n * sqrt(17) * [5/2 -(1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2-(1/2) * sqrt(17)]^(1/ 2) * n + (1/4) * [5/2-(1/2) * sqrt(17)]^( -1/4) * [5/2-(1/2) * sqrt(17)]^[(1/ 4) * (-1)^n] * [5/2-(1/2) * sqrt(17)]^(1/2) * n + (1/4) * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^(1/2) * n-(1/4) * (-1)^n * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^[(1/2) * n]-(1/4) * [5/2-(1/2) * sqrt(17)]^(-1/ 4) * (-1)^n * [5/2-(1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2-(1/2) * sqrt(17)]^(1/2) * n + (7/68) * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^(1/ 2) * n * sqrt(17)-(7/68) * [5/2-(1/2) * sqrt(17)]^(-1/4) * sqrt(17) * [5/2-(1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2-(1/2) * sqrt(17)]^[(1 /2) * n], with n>=0 [From Paolo P. Lava, Oct 06 2008]
|
|
MATHEMATICA
|
a[0] = 0; a[1] = 1; a[n_] := a[n] = If[ OddQ[n], a[n - 1] + 2a[n - 2], 2a[n - 1] + a[n - 2]]; Table[a[n], {n, 0, 30}]
LinearRecurrence[{0, 5, 0, -2}, {0, 1, 2, 4}, 40] (* Harvey P. Dale, Jul 05 2022 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|