login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079162 a(n) = 5a(n-2) - 2a(n-4). 2
0, 1, 2, 4, 10, 18, 46, 82, 210, 374, 958, 1706, 4370, 7782, 19934, 35498, 90930, 161926, 414782, 738634, 1892050, 3369318, 8630686, 15369322, 39369330, 70107974, 179585278, 319801226, 819187730, 1458790182, 3736768094 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
Also a(n) = a(n-1) + 2a(n-2) if n is odd, else a(n) = 2a(n-1) + a(n-2).
a(2n) = 2*A005824(2n), a(2n+1) = A005824(2n) + A005824(2n+1).
G.f.: x*(1+2*x-x^2)/(1-5*x^2+2*x^4).
a(n)=(1/68) * (-1)^n * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^(1/2) * n * sqrt(17)-(1/68) * [5/2-(1/2) * sqrt(17)]^(-1/4) * (-1)^n * sqrt(17) * [5/2 -(1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2-(1/2) * sqrt(17)]^(1/ 2) * n + (1/4) * [5/2-(1/2) * sqrt(17)]^( -1/4) * [5/2-(1/2) * sqrt(17)]^[(1/ 4) * (-1)^n] * [5/2-(1/2) * sqrt(17)]^(1/2) * n + (1/4) * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^(1/2) * n-(1/4) * (-1)^n * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^[(1/2) * n]-(1/4) * [5/2-(1/2) * sqrt(17)]^(-1/ 4) * (-1)^n * [5/2-(1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2-(1/2) * sqrt(17)]^(1/2) * n + (7/68) * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^(1/ 2) * n * sqrt(17)-(7/68) * [5/2-(1/2) * sqrt(17)]^(-1/4) * sqrt(17) * [5/2-(1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2-(1/2) * sqrt(17)]^[(1 /2) * n], with n>=0 [From Paolo P. Lava, Oct 06 2008]
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := a[n] = If[ OddQ[n], a[n - 1] + 2a[n - 2], 2a[n - 1] + a[n - 2]]; Table[a[n], {n, 0, 30}]
LinearRecurrence[{0, 5, 0, -2}, {0, 1, 2, 4}, 40] (* Harvey P. Dale, Jul 05 2022 *)
CROSSREFS
Cf. A005824. a(2n+1) = A052913(n).
Sequence in context: A348396 A104723 A206140 * A257593 A197926 A228705
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Dec 29 2002
EXTENSIONS
Corrected the g.f. and index in formula with A052913 R. J. Mathar, Apr 01 2009, May 02 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 10 03:15 EDT 2023. Contains 363186 sequences. (Running on oeis4.)