login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005824 a(n) = 5a(n-2) - 2a(n-4).
(Formerly M2489)
5
0, 1, 1, 3, 5, 13, 23, 59, 105, 269, 479, 1227, 2185, 5597, 9967, 25531, 45465, 116461, 207391, 531243, 946025, 2423293, 4315343, 11053979, 19684665, 50423309, 89792639, 230008587, 409593865, 1049196317, 1868384047, 4785964411 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..3036

Milica Anđelić and Carlos M. da Fonseca, On the constant coefficients of a certain recurrence relation: A simple proof, Heliyon (2021) Vol. 7, No. 8, e07764.

D. Panario, M. Sahin and Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS, Vol. 13, 2013, #A78.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

J. Shallit, On the worst case of three algorithms for computing the Jacobi symbol, J. Symbolic Comput. 10 (1990), no. 6, 593-610.

Index entries for linear recurrences with constant coefficients, signature (0,5,0,-2).

FORMULA

Also a(n) = a(n-1) + 2a(n-2) if n is even, else a(n) = 2a(n-1) + a(n-2).

From Paolo P. Lava, Jun 10 2008: (Start)

a(n) = (1/68) * (-1)^n * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^[(1/2) * n] * sqrt(17) - (1/68) * [5/2 - (1/2) * sqrt(17)]^(-1/4) * (-1)^n * sqrt(17) * [5/2 - (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 - (1/2) * sqrt(17)]^[(1/2) * n] +

(1/4) * [5/2 - (1/2) * sqrt(17)]^( - 1/4) * [5/2 - (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 - (1/2) * sqrt(17)]^[(1/2) * n] + (1/4) * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^[(1/2) * n] - (1/4) * (-1)^n * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^[(1/2) * n] - (1/4) * [5/2 - (1/2) * sqrt(17)]^(-1/4) * (-1)^n * [5/2 - (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 - (1/2) * sqrt(17)]^[(1/2) * n] +

(3/68) * [5/2 + (1/2) * sqrt(17)]^(-1/4) * [5/2 + (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 + (1/2) * sqrt(17)]^[(1/2) * n] * sqrt(17) - (3/68) * [5/2 - (1/2) * sqrt(17)]^(-1/4) * sqrt(17) * [5/2 - (1/2) * sqrt(17)]^[(1/4) * (-1)^n] * [5/2 - (1/2) * sqrt(17)]^[(1 /2) * n], with n>= 0. (End)

a(2n+1) = A052984(n). [Index corrected by R. J. Mathar, Apr 01 2009]

a(2n) = A107839(n-1). [R. J. Mathar, Apr 01 2009]

MAPLE

A005824:=-z*(2*z+1)*(z-1)/(1-5*z**2+2*z**4); [Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

a[0] = 0; a[1] = 1; a[n_] := a[n] = If[ EvenQ[n], a[n - 1] + 2a[n - 2], 2a[n - 1] + a[n - 2]]; Table[a[n], {n, 0, 31}]

LinearRecurrence[{0, 5, 0, -2}, {0, 1, 1, 3}, 40] (* Harvey P. Dale, Jul 09 2015 *)

CROSSREFS

Cf. A079162.

Sequence in context: A089067 A339888 A026733 * A336103 A027305 A026766

Adjacent sequences:  A005821 A005822 A005823 * A005825 A005826 A005827

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jeffrey Shallit

EXTENSIONS

Extended by Robert G. Wilson v, Dec 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 09:21 EDT 2022. Contains 354910 sequences. (Running on oeis4.)