Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 27 2019 02:57:21
%S 0,1,1,2,1,3,1,3,2,3,1,4,1,3,3,4,1,5,1,5,3,3,1,5,2,3,3,5,1,6,1,5,3,3,
%T 3,6,1,3,3,6,1,7,1,5,5,3,1,6,2,5,3,5,1,7,3,7,3,3,1,7,1,3,4,6,3,7,1,5,
%U 3,6,1,7,1,3,5,5,3,7,1,7,4,3,1,8,3,3,3,7,1,8,3,5,3,3,3,7,1,5,5,8,1,7,1,7,7
%N Number of distinct positive subset-sums of the integer partition with Heinz number n.
%C A positive integer n is a positive subset-sum of an integer partition y if there exists a submultiset of y with sum n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C a(n) <= A000005(n).
%C One less than the number of distinct values obtained when A056239 is applied to all divisors of n. - _Antti Karttunen_, Jul 01 2018
%H Antti Karttunen, <a href="/A304793/b304793.txt">Table of n, a(n) for n = 1..65537</a>
%e The positive subset-sums of (4,3,1) are {1, 3, 4, 5, 7, 8} so a(70) = 6.
%e The positive subset-sums of (5,1,1,1) are {1, 2, 3, 5, 6, 7, 8} so a(88) = 7.
%t Table[Length[Union[Total/@Rest[Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
%o (PARI)
%o up_to = 65537;
%o A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
%o v056239 = vector(up_to,n,A056239(n));
%o A304793(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s = v056239[d]), mapput(m,s,s); k++)); (k-1); }; \\ _Antti Karttunen_, Jul 01 2018
%Y Cf. A056239, A122768, A276024, A284640, A296150, A299701, A299702, A301855, A301935, A301957, A304792, A304795, A305611.
%K nonn
%O 1,4
%A _Gus Wiseman_, May 18 2018
%E More terms from _Antti Karttunen_, Jul 01 2018