OFFSET
1,6
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number of distinct values obtained when A289508 is applied to all divisors of n larger than one. - Antti Karttunen, Sep 28 2018
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
EXAMPLE
455 is the Heinz number of (6,4,3) which has possible GCDs of nonempty submultisets {1,2,3,4,6} so a(455) = 5.
MATHEMATICA
Table[Length[Union[GCD@@@Rest[Subsets[If[n==1, {}, Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]]]]]]], {n, 100}]
PROG
(PARI)
A289508(n) = gcd(apply(p->primepi(p), factor(n)[, 1]));
A316555(n) = { my(m=Map(), s, k=0); fordiv(n, d, if((d>1)&&!mapisdefined(m, s=A289508(d)), mapput(m, s, s); k++)); (k); }; \\ Antti Karttunen, Sep 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 06 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 28 2018
STATUS
approved