OFFSET
1,1
COMMENTS
Any integer k in the sequence encodes (by 'Heinz encoding' cf. A056239) a multiset of integers whose gcd is 1, namely the multiset containing r_j copies of j if k factors as Product_j prime(j)^{r_j} with gcd_j j = 1.
Clearly the sequence contains all even numbers and no odd primes or odd prime powers. It also clearly contains all numbers that are divisible by consecutive primes.
The sequence is the list of those k such that A289508(k) = 1.
Heinz numbers of integer partitions with relatively prime parts, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 13 2018
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000
EXAMPLE
6 is a term because 6 = p_1*p_2 and gcd(1,2) = 1.
From Gus Wiseman, Apr 13 2018: (Start)
Sequence of integer partitions with relatively prime parts begins:
02 : (1)
04 : (11)
06 : (21)
08 : (111)
10 : (31)
12 : (211)
14 : (41)
15 : (32)
16 : (1111)
18 : (221)
20 : (311)
22 : (51)
24 : (2111)
26 : (61)
28 : (411)
30 : (321)
32 : (11111)
33 : (52)
34 : (71)
35 : (43)
36 : (2211)
38 : (81)
40 : (3111)
(End)
MAPLE
p:=1:for ind to 10000 do p:=nextprime(p); primeindex[p]:=ind; od:
out:=[]:for n from 2 to 100 do m:=[]; f:=ifactors(n)[2]; g:=0;
for k to nops(f) do mk:=primeindex[f[k][1]]; m:=[op(m), mk];
g:=gcd(g, mk); od; if g=1 then out:=[op(out), n]; fi; od:out;
MATHEMATICA
Select[Range[200], GCD@@PrimePi/@FactorInteger[#][[All, 1]]===1&] (* Gus Wiseman, Apr 13 2018 *)
PROG
(PARI) isok(n) = my(f=factor(n)); gcd(apply(x->primepi(x), f[, 1])) == 1; \\ Michel Marcus, Jul 19 2017
(Python)
from sympy import gcd, primepi, primefactors
def ok(n): return gcd([primepi(p) for p in primefactors(n)]) == 1
print([n for n in range(1, 151) if ok(n)]) # Indranil Ghosh, Aug 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Christopher J. Smyth, Jul 11 2017
STATUS
approved