The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302696 Numbers whose prime indices are pairwise coprime. Nonprime Heinz numbers of integer partitions with pairwise coprime parts. 73
 1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 40, 44, 46, 48, 51, 52, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 74, 76, 77, 80, 82, 85, 86, 88, 92, 93, 94, 95, 96, 102, 104, 106, 110, 112, 116, 118, 119, 120, 122, 123, 124, 128, 132 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE Sequence of integer partitions with pairwise coprime parts begins: (), (1), (11), (21), (111), (31), (211), (41), (32), (1111), (311), (51), (2111), (61), (411), (321). Missing from this list are: (2), (3), (4), (22), (5), (6), (7), (221), (8), (42), (9), (33), (222). MAPLE filter:= proc(n) local F;    F:= ifactors(n)[2];    if nops(F)=1 then if F[1][1] = 2 then return true else return false fi fi;    if ormap(t -> t[2]>1 and t[1] <> 2, F) then return false fi;    F:= map(t -> numtheory:-pi(t[1]), F);    ilcm(op(F))=convert(F, `*`) end proc: select(filter, [\$1..200]); # Robert Israel, Sep 10 2020 MATHEMATICA primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; Select[Range[200], Or[#===1, CoprimeQ@@primeMS[#]]&] CROSSREFS Cf. A000837, A000961, A001222, A005117, A007359, A051424, A275024, A289508, A289509, A298748, A302568, A302569, A302697, A302698. Sequence in context: A336735 A304711 A324847 * A195125 A228295 A184592 Adjacent sequences:  A302693 A302694 A302695 * A302697 A302698 A302699 KEYWORD nonn AUTHOR Gus Wiseman, Apr 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 20:36 EDT 2021. Contains 343652 sequences. (Running on oeis4.)