login
A302696
Numbers whose prime indices (with repetition) are pairwise coprime. Nonprime Heinz numbers of integer partitions with pairwise coprime parts.
78
1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 40, 44, 46, 48, 51, 52, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 74, 76, 77, 80, 82, 85, 86, 88, 92, 93, 94, 95, 96, 102, 104, 106, 110, 112, 116, 118, 119, 120, 122, 123, 124, 128, 132
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number 36 = prime(1)*prime(1)*prime(2)*prime(2) is not included in the sequence, because the pair of prime indices {2,2} is not coprime. - Gus Wiseman, Dec 06 2021
EXAMPLE
Sequence of integer partitions with pairwise coprime parts begins: (), (1), (11), (21), (111), (31), (211), (41), (32), (1111), (311), (51), (2111), (61), (411), (321).
Missing from this list are: (2), (3), (4), (22), (5), (6), (7), (221), (8), (42), (9), (33), (222).
MAPLE
filter:= proc(n) local F;
F:= ifactors(n)[2];
if nops(F)=1 then if F[1][1] = 2 then return true else return false fi fi;
if ormap(t -> t[2]>1 and t[1] <> 2, F) then return false fi;
F:= map(t -> numtheory:-pi(t[1]), F);
ilcm(op(F))=convert(F, `*`)
end proc:
select(filter, [$1..200]); # Robert Israel, Sep 10 2020
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[200], Or[#===1, CoprimeQ@@primeMS[#]]&]
PROG
(PARI) isA302696(n) = if(isprimepower(n), !(n%2), if(!issquarefree(n>>valuation(n, 2)), 0, my(pis=apply(primepi, factor(n)[, 1])); (lcm(pis)==factorback(pis)))); \\ Antti Karttunen, Dec 06 2021
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 11 2018
EXTENSIONS
Clarification (with repetition) added to the definition by Antti Karttunen, Dec 06 2021
STATUS
approved