login
A302694
a(n) is the smallest integer k such that A002828(k*n) = 3.
3
3, 3, 1, 3, 6, 1, 2, 3, 3, 3, 1, 1, 6, 1, 2, 3, 3, 3, 1, 6, 1, 1, 2, 1, 3, 3, 1, 2, 6, 1, 2, 3, 1, 3, 1, 3, 6, 1, 2, 3, 3, 1, 1, 1, 6, 1, 2, 1, 3, 3, 1, 6, 6, 1, 2, 1, 1, 3, 1, 2, 6, 1, 2, 3, 3, 1, 1, 3, 1, 1, 2, 3, 3, 3, 1, 1, 1, 1, 2, 6, 3, 3, 1, 1, 6, 1, 2, 1, 3, 3
OFFSET
1,1
COMMENTS
All terms are squarefree.
FORMULA
a(n^2) = 3.
Conjecture: a(n) <= 6.
EXAMPLE
a(2) = 3 because A002828(1*2) = 2, A002828(2*2) = 1,..., and 3 is the smallest multiplier leading to A002828(3*2) = 3.
MAPLE
A302694 := proc(n)
for k from 1 do
if A002828(k*n) = 3 then
return k;
end if;
end do:
end proc:
seq(A302694(n), n=1..100) ; # R. J. Mathar, Apr 16 2018
PROG
(PARI) istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1;
isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7;
a002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))); \\ A002828
a(n) = {my(m=1); while(a002828(m*n)!=3, m++); m; } \\ Michel Marcus, Apr 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name corrected and more terms added by Michel Marcus, Apr 12 2018
STATUS
approved