OFFSET
0,4
COMMENTS
Starting (1, 1, 2, 3, 6, 7, 14, ...), = row sums of triangle A137585. - Gary W. Adamson, Jan 27 2008
Triangle A168532 has aerated variants of this sequence in each column starting with offset 1, row sums = A000041. - Gary W. Adamson, Nov 28 2009
A partition is aperiodic iff its multiplicities are relatively prime, i.e., its Heinz number (A215366) is not a perfect power (A007916). - Gus Wiseman, Dec 19 2017
This sequence is monotonically increasing; each partition of n-1 can have a part of size 1 added to it to get a partition counted in a(n). - Franklin T. Adams-Watters, Jul 24 2020
REFERENCES
H. W. Gould, personal communication.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
Mohamed El Bachraoui, On the Parity of p(n,3) and p_psi(n,3), Contributions to Discrete Mathematics, Vol. 5.2 (2010).
Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023.
Mircea Merca and Maxie D. Schmidt, Generating Special Arithmetic Functions by Lambert Series Factorizations, arXiv:1706.00393 [math.NT], 2017. See Remark 3.4.
N. J. A. Sloane, Transforms
FORMULA
Möbius transform of A000041. - Christian G. Bower, Jun 11 2000
Product_{n>0} 1/(1-q^n) = 1 + Sum_{n>0} a(n)*q^n/(1-q^n). - Mamuka Jibladze, Nov 14 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019
a(n) <= p(n) <= a(n+1), where p(n) is the number of partitions of n (A000041). - Franklin T. Adams-Watters, Jul 24 2020
EXAMPLE
Of the 11 partitions of 6, we must exclude 6, 4+2, 3+3 and 2+2+2, so a(6) = 11 - 4 = 7.
For n=6, 2+2+1+1 is periodic because it can be written 2*(2+1), similarly 1+1+1+1+1+1, 3+3 and 2+2+2.
The a(6) = 7 partitions into relatively prime parts are (51), (411), (321), (3111), (2211), (21111), (111111). The a(6) = 7 aperiodic partitions are (6), (51), (42), (411), (321), (3111), (21111). - Gus Wiseman, Dec 19 2017
MATHEMATICA
p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; g[n_, j_] := Apply[GCD, Part[p[n], j]]; h[n_] := Table[g[n, j], {j, 1, l[n]}]; Join[{1}, Table[Count[h[n], 1], {n, 1, 20}]]
(* Clark Kimberling, Mar 09 2012 *)
a[0] = 1; a[n_] := Sum[ MoebiusMu[n/d] * PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 03 2013 *)
PROG
(PARI) N=66; x='x+O('x^N); gf=2+sum(n=1, N, (1/eta(x^n))*moebius(n)); Vec(gf) \\ Joerg Arndt, May 11 2013
(PARI) print1("1, "); for(n=1, 46, my(s=0); forpart(X=n, s+=gcd(X)==1); print1(s, ", ")) \\ Hugo Pfoertner, Mar 27 2020
(Python)
from sympy import npartitions, mobius, divisors
def a(n): return 1 if n==0 else sum(mobius(n//d)*npartitions(d) for d in divisors(n)) # Indranil Ghosh, Apr 26 2017
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Corrected and extended by David W. Wilson, Aug 15 1996
Additional name from Christian G. Bower, Jun 11 2000
STATUS
approved