OFFSET
1,3
COMMENTS
An integer partition is totally aperiodic iff either it is strict or it is aperiodic with totally aperiodic multiplicities.
EXAMPLE
The a(6) = 7 aperiodic integer partitions are: (6), (51), (42), (411), (321), (3111), (21111). The first aperiodic integer partition that is not totally aperiodic is (432211).
MATHEMATICA
totaperQ[m_]:=Or[UnsameQ@@m, And[GCD@@Length/@Split[Sort[m]]==1, totaperQ[Sort[Length/@Split[Sort[m]]]]]];
Table[Length[Select[IntegerPartitions[n], totaperQ]], {n, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 28 2018
STATUS
approved