login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319813
a(n) is the smallest a such that n is divisible by a^n + 1, or 0 if no such a exists.
1
1, 1, 2, 0, 4, 0, 6, 0, 2, 3, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 5, 0, 22, 0, 4, 5, 2, 0, 28, 0, 30, 0, 32, 13, 34, 0, 36, 0, 17, 0, 40, 0, 42, 0, 14, 0, 46, 0, 6, 3, 50, 0, 52, 0, 19, 0, 8, 17, 58, 0, 60, 0, 5, 0, 64, 0, 66, 0, 68, 0, 70, 0, 72, 31, 14, 0, 76
OFFSET
1,3
COMMENTS
a(n) = 0 iff n is even and -1 is not a square modulo n, that is, n is even and not in A008784. For other n > 2, 2 <= a(n) <= n - 1.
a(p) = p - 1 for primes p. For composite n, a(n) = n - 1 iff gcd(n, phi(n)) = 1, that is, n is in A050384.
a(A006521(n)) = 2.
LINKS
FORMULA
For n = 9, 9 is divisible by a^9 + 1 implies a == 2 (mod 3), so a(9) = 2.
For n = 10, 10 is divisible by a^10 + 1 implies a == 3, 7 (mod 10), so a(10) = 3.
For n = 34, 34 is divisible by a^34 + 1 implies a == 13, 21 (mod 34), so a(34) = 13.
PROG
(PARI) a(n) = if(!(n%2)&&!issquare(Mod(-1, n)), 0, my(i=1); while(Mod(i, n)^n!=n-1, i++); i)
CROSSREFS
Cf. A074792 (a^n - 1 instead of a^n + 1).
Cf. also A006521, A008784, A050384.
Sequence in context: A320582 A119690 A166260 * A366562 A071648 A001613
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 28 2018
STATUS
approved