login
A074792
Least k > 1 such that k^n == 1 (mod n).
9
2, 3, 4, 3, 6, 5, 8, 3, 4, 9, 12, 5, 14, 13, 16, 3, 18, 5, 20, 3, 4, 21, 24, 5, 6, 25, 4, 13, 30, 11, 32, 3, 34, 33, 36, 5, 38, 37, 16, 3, 42, 5, 44, 21, 16, 45, 48, 5, 8, 9, 52, 5, 54, 5, 16, 13, 7, 57, 60, 7, 62, 61, 4, 3, 66, 23, 68, 13, 70, 29, 72, 5, 74, 73, 16, 37, 78, 17, 80, 3
OFFSET
1,1
LINKS
FORMULA
If p is prime a(p)=p+1 and a(2p)=2p-1; if n is in A050384 a(n)=n+1; if n is in A067945 a(n)=3 etc. It seems that sum(k=1, n, a(k)) is asymptotic to c*n^2 with c=0.2...
MATHEMATICA
Do[k = 2; While[ !IntegerQ[(k^n - 1)/n], k++ ]; Print[k], {n, 1, 80}] (* Robert G. Wilson v *)
PROG
(PARI) a(n)=if(n<0, 0, s=2; while((s^n-1)%n>0, s++); s)
(PARI) a(n)=my(s=2); while(Mod(s, n)^n-1!=0, s++); return(s) \\ Rémy Sigrist, Apr 02 2017
CROSSREFS
a(n) = {A076944(n)}^(1/n).
Sequence in context: A126214 A126801 A076945 * A321168 A341313 A341312
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 07 2002
STATUS
approved