login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074790
a(n) = (2*n+1)!*Sum_{k=0..n} (-1)^k/(2*k+1)!.
4
1, 5, 101, 4241, 305353, 33588829, 5239857325, 1100370038249, 299300650403729, 102360822438075317, 42991545423991633141, 21753721984539766369345, 13052233190723859821607001, 9162667699888149594768114701
OFFSET
0,2
LINKS
FORMULA
a(n) = round(sin(1)*(2*n+1)!).
a(n) = A009551(2*n+1).
From Peter Bala, Jan 30 2015: (Start)
G.f.: sin(x)/(1 - x^2) = x + 5*x^3/3! + 101*x^5/5! + 4241*x^7/7! + ....
a(n) = 2*n*(2*n + 1)*a(n-1) + (-1)^n with a(0) = 1.
a(n) = (4*n^2 + 2*n - 1)*a(n-1) + (2*n-1)*(2*n-2)*a(n-2) with a(0) = 1, a(1) = 5.
The sequence b(n) := (2*n + 1)! also satisfies the second recurrence but with b(0) = 1, b(1) = 6. This leads to the continued fraction representation a(n) = (2*n + 1)!*(1 - 1/(6 + 6/(19 + 20/(41 + ... + (2*n - 1)*(2*n - 2)/(4*n^2 + 2*n - 1) )))) for n >= 2. Taking the limit gives the continued fraction representation sin(1) = 1 - 1/(6 + 6/(19 + 20/(41 + ... + (2*n - 1)*(2*n - 2)/((4*n^2 + 2*n - 1) + ... )))). (End)
MATHEMATICA
Table[(2n+1)!Sum[(-1)^k/(2k+1)!, {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Sep 14 2019 *)
PROG
(PARI) a(n) = (2*n+1)!*sum(k=0, n, (-1)^k/(2*k+1)!); \\ Michel Marcus, Sep 09 2016
(Sage) [factorial(2*n+1)*sum((-1)^j/factorial(2*j+1) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 09 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Sep 07 2002
STATUS
approved