OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..224
FORMULA
a(n) = round(sin(1)*(2*n+1)!).
a(n) = A009551(2*n+1).
From Peter Bala, Jan 30 2015: (Start)
G.f.: sin(x)/(1 - x^2) = x + 5*x^3/3! + 101*x^5/5! + 4241*x^7/7! + ....
a(n) = 2*n*(2*n + 1)*a(n-1) + (-1)^n with a(0) = 1.
a(n) = (4*n^2 + 2*n - 1)*a(n-1) + (2*n-1)*(2*n-2)*a(n-2) with a(0) = 1, a(1) = 5.
The sequence b(n) := (2*n + 1)! also satisfies the second recurrence but with b(0) = 1, b(1) = 6. This leads to the continued fraction representation a(n) = (2*n + 1)!*(1 - 1/(6 + 6/(19 + 20/(41 + ... + (2*n - 1)*(2*n - 2)/(4*n^2 + 2*n - 1) )))) for n >= 2. Taking the limit gives the continued fraction representation sin(1) = 1 - 1/(6 + 6/(19 + 20/(41 + ... + (2*n - 1)*(2*n - 2)/((4*n^2 + 2*n - 1) + ... )))). (End)
MATHEMATICA
Table[(2n+1)!Sum[(-1)^k/(2k+1)!, {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Sep 14 2019 *)
PROG
(PARI) a(n) = (2*n+1)!*sum(k=0, n, (-1)^k/(2*k+1)!); \\ Michel Marcus, Sep 09 2016
(Sage) [factorial(2*n+1)*sum((-1)^j/factorial(2*j+1) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 09 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Sep 07 2002
STATUS
approved