login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074788
Prime numbers in the Perrin sequence b(n+1) = b(n-1) + b(n-2) with initial values b(1)=3, b(2)=0, b(3)=2.
4
2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797, 22584751787583336797527561822649328254745329
OFFSET
1,1
COMMENTS
a(17) has 44 digits; a(18) has 114 digits; a(19) has 128 digits. - Harvey P. Dale, Aug 11 2011
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..24
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Math. Forum, Discussion
Eric Weisstein's World of Mathematics, Perrin Sequence
FORMULA
a(n+1) = a(n-1)+a(n-2) if a(n+1) is prime and a(1) = 3, a(2) = 0, a(3) = 2
EXAMPLE
a(1)=3, a(2)=0, a(3)=2; then for n = 3, a(4) = a(2) + a(1) = 0 + 3 = 3; for n = 4, a(5) = a(3) + a(2) = 2 + 0 = 2 etc
MATHEMATICA
a[1] = 3; a[2] = 0; a[3] = 2; a[n_] := a[n] = a[n - 2] + a[n - 3]; Do[ If[ PrimeQ[ a[n]], Print[ a[n]]], {n, 1, 357}]
Union[Select[LinearRecurrence[{0, 1, 1}, {3, 0, 2}, 500], PrimeQ]] (* Harvey P. Dale, Aug 11 2011 *)
PROG
(PARI) aprime(n)= a=vector(n+1); a[1]=3; a[2]=0; a[3]=2; print("n a(n+1)"); for(x=3, n, a[x+1]=a[x-1]+a[x-2]; if(isprime(a[x+1]), print("a("x+1") = "a[x+1])) )
CROSSREFS
Sequence in context: A289757 A030480 A048418 * A262833 A070805 A255161
KEYWORD
nonn
AUTHOR
Cino Hilliard, Sep 07 2002
EXTENSIONS
Edited by Robert G. Wilson v, Sep 13 2002
STATUS
approved