login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074787
Sum of squares of the number of unitary divisors of k from 1 to n.
2
1, 5, 9, 13, 17, 33, 37, 41, 45, 61, 65, 81, 85, 101, 117, 121, 125, 141, 145, 161, 177, 193, 197, 213, 217, 233, 237, 253, 257, 321, 325, 329, 345, 361, 377, 393, 397, 413, 429, 445, 449, 513, 517, 533, 549, 565, 569, 585, 589, 605, 621, 637, 641, 657, 673
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} ud(k)^2 = Sum_{k=1..n} A034444(k)^2 . a(n) = Sum_{k=1..n} 2^(2*omega(k)) = Sum_{k=1..n} 2^(2*A001221(k)).
a(n) ~ c * n * log(n)^3, where c = (1/6) * Product_{p prime} ((1-1/p)^3*(1+3/p)) = A319592 / 6. - Amiram Eldar, Jul 02 2022
MAPLE
with(numtheory): seq(add(2^(2*nops(ifactors(k)[2])), k=1..n), n=1..100);
MATHEMATICA
Accumulate[Table[Count[Divisors[n], _?(GCD[#, n/#]==1&)], {n, 60}]^2] (* Harvey P. Dale, Dec 06 2012 *)
Accumulate[Table[4^PrimeNu[n], {n, 1, 50}]] (* Amiram Eldar, Jul 02 2022 *)
CROSSREFS
Equals 4*A069811(n) + 1, for n <= 29.
Sequence in context: A349538 A334524 A125018 * A255645 A079497 A314701
KEYWORD
nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002
STATUS
approved