The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064608 Partial sums of A034444: sum of number of unitary divisors from 1 to n. 15
 1, 3, 5, 7, 9, 13, 15, 17, 19, 23, 25, 29, 31, 35, 39, 41, 43, 47, 49, 53, 57, 61, 63, 67, 69, 73, 75, 79, 81, 89, 91, 93, 97, 101, 105, 109, 111, 115, 119, 123, 125, 133, 135, 139, 143, 147, 149, 153, 155, 159, 163, 167, 169, 173, 177, 181, 185, 189, 191, 199, 201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = Sum_{k<=n} 2^omega(k) where omega(k) is the number of distinct primes in the factorization of k. - Benoit Cloitre, Apr 16 2002 a(n) is the number of (p, q) lattice points that are visible from (0, 0), where p and q satisfy: p >= 1, q >= 1, p * q <= n. - Luc Rousseau, Jul 09 2017 REFERENCES E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig 1909 (Chelsea reprint 1953), p. 594. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith) Masum Billal, Number of Ways To Write as Product of Co-prime Numbers, arXiv:1909.07823 [math.GM], 2019. E. Cohen, The number of unitary divisors of an integer, Am. Math. Mon. 67, 879-880 (1960). E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 2, Leipzig, Berlin, B. G. Teubner, 1909. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909. F. Mertens, Uber einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math., 77 (1874), 289-338. V. Sitaramaiah and M.V. Subbarao, Unitary divisor problem for arithmetic progressions, Annales Univ. Sci. Budapest., Sect. Comp. 32 (2010) 73-89. D. Suryanarayana and V. Siva Rama Prasad, The number of k-free divisors of an integer, Acta Arithmetica XVII (1971), 345-354. D. Zhang and W. Zhai, Mean Values of a Gcd-Sum Function Over Regular Integers Modulo n, J. Int. Seq. 13 (2010), 10.4.7. Eq (8) for asymptotics. FORMULA a(n) = a(n-1) + A034444(n) = a(n-1) + 2^A001221(n) Sum_{j=1..n} ud(j) where ud(j) = A034444(j) = 2^A001221(n). a(n) = n*log(n)/zeta(2) + O(n) where zeta(2) = Pi^2/6. - Benoit Cloitre, Apr 16 2002 a(n) = Sum_{k=1..n} mu(k)^2*floor(n/k). - Benoit Cloitre, Apr 16 2002 Mertens's theorem (1874): a(n) = Sum_{k<=n} ud(k) = (n/Zeta(2))*(log(n) + 2*gamma - 1 - 2*Zeta'(2)/Zeta(2)) + O(sqrt(n)*log(n)), where gamma is the Euler-Mascheroni constant A001620. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002 G.f.: (1/(1 - x))*Sum_{k>=1} mu(k)^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017 MAPLE with(numtheory): A064608:=n->add(mobius(k)^2*floor(n/k), k=1..n): seq(A064608(n), n=1..100); # Wesley Ivan Hurt, Dec 05 2015 MATHEMATICA a[n_] := Count[Divisors@ n, d_ /; GCD[d, n/d] == 1]; Accumulate@ Array[a, {61}] (* Michael De Vlieger, Oct 21 2015, after Jean-François Alcover at A034444 *) Accumulate@ Array[2^PrimeNu[#] &, {61}] (* Amiram Eldar, Oct 21 2019 *) PROG (PARI) { for (n=1, 80, a=sum(k=1, n, moebius(k)^2*floor(n/k)); write("b064608.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009 (PARI) a(n)=sum(k=1, sqrtint(n), moebius(k)*(2*sum(l=1, sqrtint(n\(k*k)), n\(k*k*l))-sqrtint(n\(k*k))^2)); \\ More efficient formula for large n values (up to 10^14) vector(80, i, a(i)) \\ Jerome Raulin, Nov 01 2015 (Python) from sympy.ntheory.factor_ import primenu def A064608(n): return sum(1<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 01:35 EDT 2024. Contains 371964 sequences. (Running on oeis4.)