login
A079497
a(1)=1; for n > 2, a(n) is the smallest integer > a(n-1) such that frac(sqrt(5)*a(n)) < frac(sqrt(5)*a(n-1)).
1
1, 5, 9, 13, 17, 89, 161, 233, 305, 1597, 2889, 4181, 5473, 28657, 51841, 75025, 98209, 514229, 930249, 1346269, 1762289, 9227465, 16692641, 24157817, 31622993, 165580141, 299537289, 433494437, 567451585, 2971215073, 5374978561
OFFSET
1,2
LINKS
FORMULA
a(1)=1, a(2)=5, a(3)=9, a(4)=13; for n > 4, if n == 1 (mod 4) then a(n) = 6a(n) - a(n-1); otherwise, a(n) = 2a(n) - a(n-1).
MATHEMATICA
nxt[{n_, a_, b_, c_, d_}]:={n+1, b, c, d, If[Mod[n, 4]==1, 6d-c, 2d-c]}; NestList[nxt, {4, 1, 5, 9, 13}, 30][[All, 2]] (* Harvey P. Dale, Mar 30 2022 *)
CROSSREFS
Cf. A005246.
Sequence in context: A125018 A074787 A255645 * A314701 A314702 A314703
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 20 2003
STATUS
approved