login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079499
Total number of parts in all partitions of n into distinct odd parts.
6
0, 1, 0, 1, 2, 1, 2, 1, 4, 4, 4, 4, 6, 7, 6, 10, 12, 13, 12, 16, 18, 22, 22, 25, 32, 36, 36, 42, 50, 53, 58, 64, 76, 83, 88, 99, 116, 123, 132, 147, 168, 181, 194, 215, 240, 262, 280, 306, 346, 375, 396, 437, 482, 521, 558, 610, 670, 724, 772, 840, 922, 993, 1056, 1151, 1256, 1348
OFFSET
0,5
COMMENTS
Also sum of the sizes of the Durfee squares of all self-conjugate partitions of n. Example: a(13)=7 because there are three self-conjugate partitions of 13, namely [7,1,1,1,1,1,1], [5,3,3,1,1] and [4,4,3,2], having Durfee squares of sizes 1,3 and 3, respectively. a(n) = Sum_{k=1..floor(sqrt(n))} k*A116422(n,k). - Emeric Deutsch, Feb 14 2006
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..20000 (terms 0..1000 from T. D. Noe)
Arnold Knopfmacher and Neville Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18.
FORMULA
G.f.: (Sum_{k>=1} x^(2*k-1)/(1 + x^(2*k-1))) * Product_{m>=1} (1 + x^(2m-1)).
G.f.: Sum_{k>=1} k*x^(k^2)/Product_{j=1..k} (1 - x^(2*j)). - Vladeta Jovovic, Aug 06 2004
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/6)) / (Pi * 2^(5/4) * n^(1/4)). - Vaclav Kotesovec, May 20 2018
EXAMPLE
a(13)=7 because the partitions of 13 into distinct odd parts are [13], [9,3,1] and [7,5,1] and we have 1+3+3=7 parts.
MAPLE
g:=sum(k*x^(k^2)/product(1-x^(2*i), i =1..k), k=1..20):gser:=series(g, x=0, 52): seq(coeff(gser, x, n), n=0..50); # Emeric Deutsch, Feb 14 2006
MATHEMATICA
max = 100; s = Sum[ k*x^(k^2) / Product[1-x^(2*j), {j, 1, k}], {k, 1, Sqrt[max] // Ceiling}]; CoefficientList[ Series[s, {x, 0, max}], x] (* Jean-François Alcover, Feb 19 2015, after Vladeta Jovovic *)
PROG
(PARI)
N=66; S=2+sqrtint(N); x='x+O('x^N);
gf=sum(n=0, S, n*x^(n^2)/prod(k=1, n, 1-x^(2*k)) );
concat( [0], Vec(gf) )
\\ Joerg Arndt, Feb 18 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Arnold Knopfmacher, Jan 21 2003
STATUS
approved