login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079502
Triangle T(n,k) read by rows; related to number of preorders.
6
1, 1, 2, 1, 5, 5, 1, 10, 24, 16, 1, 18, 79, 122, 61, 1, 31, 223, 602, 680, 272, 1, 52, 579, 2439, 4682, 4155, 1385, 1, 86, 1432, 8856, 25740, 38072, 27776, 7936, 1, 141, 3434, 30030, 124146, 272416, 326570, 202084, 50521, 1, 230, 8071, 97332
OFFSET
0,3
LINKS
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (The numbers u_r^n on page 20.)
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
FORMULA
From Sean A. Irvine, Mar 12 2017: (Start)
A079502 can be constructed one row at a time from the corresponding row of A050447. For row n, construct up to the n-th difference sequence of row n in A050447, retaining the first element of each difference sequence. Row n of A079502 is then constructed backwards (i.e., starting with A079502(n,n) and computing down to A079502(n,2)) from the first element of the n-th difference sequence, then successively subtracting the first element of the previous difference sequences. More precisely, let R_n denote the n-th row of A050447 augmented with R_n(1) = 0, and R_n^(d) the d-th difference of that row, such that R_n^(0)(m) = R_n(m) and R_n^(k)(m) = R_n^(k-1)(m+1) - R_n^(k-1)(m). Row n of A079502 is then T(n,n) = R_n^(n)(0) and for m < n, T(n,m) = R_n^(n)(0) - T(n,m+1).
For example, starting with row 4 of A050447: [0], 1, 8, 31, 85, 190, 371, ..., we construct up to order 4 difference sequences: first-differences 1, 7, 23, 54, 105, 181, ...; second-differences 6, 16, 31, 51, 76, ...; third-differences 10, 15, 20, 25, ...; fourth-differences 5, 5, 5, ... (constant). Only the first elements of these difference sequences are needed. Thus T(4,4) = 5, T(4,3) = 10 - 5 = 5, T(4,2) = 6 - (10 - 5) = 1, T(4,1) = 1 - (6 - (10 - 5)) = 0. (End)
EXAMPLE
Triangle T(n,k) begins:
1;
1, 2;
1, 5, 5;
1, 10, 24, 16;
1, 18, 79, 122, 61;
1, 31, 223, 602, 680, 272;
1, 52, 579, 2439, 4682, 4155, 1385;
1, 86, 1432, 8856, 25740, 38072, 27776, 7936;
MATHEMATICA
t[n_, m_] := t[n, m] = If[m == 0, 1, t[n, m - 1] + Sum[t[2 k, m - 1] t[n - 1 - 2 k, m], {k, 0, (n - 1)/2}]]; Map[Function[s, Rest@ Reverse@ Map[Abs@ Fold[#2 - #1 &, Reverse@ Take[s, #]] &, Range@ Length@ s]]@ Reverse@ Map[First, NestList[Differences@ # &, {First@ #}~Join~Differences@ #, Length@ # - 2]] &, Table[t[n, k], {n, 2, 11}, {k, 0, n}]] (* Michael De Vlieger, Mar 13 2017, after Jean-François Alcover at A050447 *)
CROSSREFS
Diagonals give A000111, A006326, A006327, A006328. Cf. A050447.
Sequence in context: A033282 A126350 A204111 * A209164 A209148 A126124
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Jan 21 2003
EXTENSIONS
More terms from Sean A. Irvine, Mar 12 2017
STATUS
approved