OFFSET
1,2
COMMENTS
Left border (unsigned) = odd-indexed Fibonacci numbers. Left border (unsigned) of A123965 = even-indexed Fibonacci numbers.
Subtriangle of the triangle T(n,k) given by [0,-2,-1/2,-1/2,0,0,0,0,...] DELTA [1,0,1/2,-1/2,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 02 2007
Reversals = bisection of triangle A152063: (1; 1,2; 1,5,5; ...) having the following property: Product_{k=1..floor((n-1)/2)} (1 + 4*cos^2 k*2Pi/n) = the odd-indexed Fibonacci numbers. Example: x^3 - 8x^2 - 19x + 13 relates to the heptagon, and with k=1,2,3,..., the product = 13. - Gary W. Adamson, Aug 15 2010
Apart from signs, equals A123971.
Matrix inverse of A124733.
FORMULA
Sum_{k=1..n} (-1)^(n-k)*T(n,k) = A001835(n). - Philippe Deléham, Jul 14 2007
T(n,k) = T(n-1,k-1) - 3*T(n-1,k) - T(n-2,k). - Philippe Deléham, Dec 13 2011
T(n,k) = (-1)^(n+k)*Sum_{m=k..n} binomial(m,k)*binomial(m+n,2*m). - Wadim Zudilin, Jan 11 2012
G.f.: (1+x)*x*y/(1+3*x+x^2-x*y). - R. J. Mathar, Aug 11 2015
EXAMPLE
First few rows of the triangle are:
1;
-2, 1;
5, -5, 1;
-13, 19, -8, 1;
34, -65, 42, -11, 1;
-89, 210, -183, 74, -14, 1;
...
Triangle (n >= 0 and 0 <= k <= n) [0,-2,-1/2,-1/2,0,0,0,0,0,...] DELTA [1,0,1/2,-1/2,0,0,0,0,0,...] begins:
1;
0, 1;
0, -2, 1;
0, 5, -5, 1;
0, -13, 19, -8, 1;
0, 34, -65, 42, -11, 1;
0, -89, 210, -183, 74, -14, 1;
0, 233, -654, 717, -394, 115, -17, 1;
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Dec 17 2006
EXTENSIONS
Corrected by Philippe Deléham, Jul 14 2007
More terms from Philippe Deléham, Dec 13 2011
STATUS
approved