login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126121
Numerators of sequence of fractions with e.g.f. sqrt(1+x)/(1-x)^2.
1
1, 5, 31, 255, 2577, 31245, 439695, 7072695, 127699425, 2562270165, 56484554175, 1358576240175, 35374065613425, 992016072172125, 29792674421484975, 954480422711190375, 32479589325536978625, 1170329273010701929125, 44502357662442514209375, 1781390379962467540641375
OFFSET
0,2
COMMENTS
Denominators are successive powers of 2.
LINKS
FORMULA
E.g.f.: 1/G(0) where G(k) = 1 - 4*x/(1 + x/(1 - x - (2*k+1)/( 2*k+1 - 4*(k+1)*x/G(k+1)))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Jul 28 2012
From Benedict W. J. Irwin, May 19 2016: (Start)
E.g.f.: sqrt(1+2*x)/(1-2*x)^2.
a(n) = (-1)^(n+1)*2^(n-1)*(n-3/2)!*2F1(2,-n;(3/2)-n;-1)/sqrt(Pi).
(End)
D-finite with recurrence a(n) -5*a(n-1) -2*(2*n-1)*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 08 2021
EXAMPLE
The fractions are 1, 5/2, 31/4, 255/8, 2577/16, 31245/32, 439695/64, ...
MATHEMATICA
With[{nn=20}, Numerator[CoefficientList[Series[Sqrt[1+x]/(1-x)^2, {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Jan 29 2016 *)
PROG
(PARI) x='x+O('x^25); Vec(serlaplace(sqrt(1+2*x)/(1-2*x)^2)) \\ G. C. Greubel, May 25 2017
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Mar 22 2007
STATUS
approved