The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291885 Number of symmetrically unique Dyck paths of semilength 2n and height n. 2
 1, 1, 5, 31, 252, 2117, 18546, 164229, 1469596, 13229876, 119712521, 1087573357, 9914033252, 90633332870, 830621140260, 7628813061585, 70200092854044, 647070588612140, 5973385906039684, 55217660246861884, 511054426374819184, 4735208302827742549 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1026 FORMULA a(n) = A291883(2n,n). MAPLE b:= proc(x, y, k) option remember; `if`(x=0, 1, `if`(y+1<=min(k, x-1), b(x-1, y+1, k), 0)+`if`(y>0, b(x-1, y-1, k), 0)) end: g:= proc(x, y, k) option remember; `if`(x=0, 1, `if`(y>0, g(x-2, y-1, k), 0)+ `if`(y+1<=k, g(x-2, y+1, k), 0)) end: a:= n-> `if`(n=0, 1, (b(4*n, 0, n) +g(4*n, 0, n) -b(4*n, 0, n-1)-g(4*n, 0, n-1))/2): seq(a(n), n=0..30); MATHEMATICA b[x_, y_, k_] := b[x, y, k] = If[x == 0, 1, If[y + 1 <= Min[k, x - 1], b[x - 1, y + 1, k], 0] + If[y > 0, b[x - 1, y - 1, k], 0]]; g[x_, y_, k_] := g[x, y, k] = If[x == 0, 1, If[y > 0, g[x - 2, y - 1, k], 0] + If[y + 1 <= k, g[x - 2, y + 1, k], 0]]; a[n_] := If[n == 0, 1, (b[4n, 0, n] + g[4n, 0, n] - b[4n, 0, n - 1] - g[4n, 0, n - 1])/2]; Array[a, 30, 0] (* Jean-François Alcover, May 31 2019, after Alois P. Heinz *) PROG (Python) from sympy.core.cache import cacheit @cacheit def b(x, y, k): return 1 if x==0 else (b(x - 1, y + 1, k) if y + 1<=min(k, x - 1) else 0) + (b(x - 1, y - 1, k) if y>0 else 0) @cacheit def g(x, y, k): return 1 if x==0 else (g(x - 2, y - 1, k) if y>0 else 0) + (g(x - 2, y + 1, k) if y + 1<=k else 0) def a(n): return 1 if n==0 else (b(4*n, 0, n) + g(4*n, 0, n) - b(4*n, 0, n - 1) - g(4*n, 0, n - 1))//2 print([a(n) for n in range(31)]) # Indranil Ghosh, Sep 06 2017 CROSSREFS Cf. A291883. Sequence in context: A046852 A361408 A056541 * A126121 A167137 A279434 Adjacent sequences: A291882 A291883 A291884 * A291886 A291887 A291888 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 02:01 EDT 2024. Contains 371667 sequences. (Running on oeis4.)