The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167137 E.g.f.: P(exp(x)-1) where P(x) is the g.f. of the partition numbers (A000041). 18
 1, 1, 5, 31, 257, 2551, 30065, 407191, 6214577, 105530071, 1972879025, 40213910551, 886979957297, 21044674731991, 534313527291185, 14448883517785111, 414475305054698417, 12568507978358276311, 401658204472560090545, 13490011548122407566871, 474964861088609044357937, 17491333169997896126211031 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS CONJECTURE: Sum_{n>=0} a(n)^m * log(1+x)^n/n! is an integer series in x for all integer m>0; see A167138 and A167139 for examples. From Peter Bala, Jul 07 2022: (Start) Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 16 we obtain the sequence [1, 1, 5, 15, 1, 7, 1, 7, 1, 7, ...], with an apparent period of 2 beginning at a(4). More generally, we conjecture that the same property holds for integer sequences having an e.g.f. of the form G(exp(x) - 1), where G(x) is an integral power series. (End) LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..400 FORMULA a(n) = Sum_{k=0..n} A000041(k)*Stirling2(n,k)*k! where A000041 is the partition numbers. E.g.f.: exp( Sum_{n>=1} sigma(n)*[exp(x)-1]^n/n ). Sum_{n>=0} a(n) * log(1+x)^n/n! = g.f. of the partition numbers (A000041). Sum_{n>=0} a(n)^2*log(1+x)^n/n! = g.f. of A167138. From Peter Bala, Sep 18 2013: (Start) Sum {n >= 0} (-1)^n*a(n)*(log(1 - x))^n/n! = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + ... is the o.g.f. of A218482. a(n) is always odd. Congruences for n >= 1: a(2*n) = 2 (mod 3); a(4*n) = 2 (mod 5); a(6*n) = 0 (mod 7); a(10*n) = 7 (mod 11); a(12*n) = 5 (mod 13); a(16*n) = 0 (mod 17). (End) From Vaclav Kotesovec, Jun 17 2018: (Start) a(n) ~ n! * exp((1/log(2) - 1) * Pi^2 / 24 + Pi*sqrt(n/(3*log(2)))) / (4 * sqrt(3) * n * (log(2))^n). a(n) ~ sqrt(Pi) * exp((1/log(2) - 1) * Pi^2 / 24 + Pi*sqrt(n/(3*log(2))) - n) * n^(n + 1/2) / (2^(3/2) * sqrt(3) * n * (log(2))^n). (End) EXAMPLE E.g.f.: A(x) = 1 + x + 5*x^2/2! + 31*x^3/3! + 257*x^4/4! +... A(log(1+x)) = P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 +... MATHEMATICA Table[Sum[PartitionsP[k]*StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 21 2018 *) nmax = 20; CoefficientList[Series[1/QPochhammer[E^x - 1], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 22 2021 *) PROG (PARI) {a(n)=if(n==0, 1, n!*polcoeff(exp(sum(m=1, n, sigma(m)*(exp(x+x*O(x^n))-1)^m/m) ), n))} (PARI) {Stirling2(n, k)=if(k<0|k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))} {a(n)=sum(k=0, n, numbpart(k)*Stirling2(n, k)*k!)} (PARI) x='x+O('x^66); Vec( serlaplace( 1/eta(exp(x)-1) ) ) \\ Joerg Arndt, Sep 18 2013 CROSSREFS Cf. A167138, A000041, A019538 (Stirling2), A218482, A305550, A306045, A320349. Sequence in context: A056541 A291885 A126121 * A279434 A000556 A320512 Adjacent sequences: A167134 A167135 A167136 * A167138 A167139 A167140 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 18:07 EST 2022. Contains 358453 sequences. (Running on oeis4.)