login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320512
Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) such that (0,1) is never used directly before or after (1,0) or (1,1).
2
1, 5, 31, 258, 2702, 33821, 492978, 8198218, 153136209, 3173544162, 72241986729, 1791612993205, 48074653669593, 1387590910289915, 42863756641047136, 1410904918289665343, 49296029555617568097, 1822020250023113834772, 71023629427964322798782
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * n! * 2^n * n^(7/4), where c = 0.1758027947... - Vaclav Kotesovec, May 14 2020
MAPLE
b:= proc(x, y, i) option remember; (l-> `if`(min(x, y)<0, 0,
`if`(max(x, y)=0, [1$2], add(`if`({i, j} in {{1, 2}, {3, 5},
{4, 5}}, 0, (p-> p+[0, p[1]])(b(x-l[j][1], y-l[j][2], j))),
j=1..5))))([[-1, 1], [1, -1], [1, 1], [1, 0], [0, 1]])
end:
a:= n-> b(n, 0$2)[2]:
seq(a(n), n=0..20);
MATHEMATICA
b[x_, y_, i_] := b[x, y, i] = With[{l = {{-1, 1}, {1, -1}, {1, 1}, {1, 0}, {0, 1}}}, If[Min[x, y] < 0, {0, 0}, If[Max[x, y] == 0, {1, 1}, Sum[If[ MemberQ[{{1, 2}, {3, 5}, {4, 5}}, Sort@{i, j}], {0, 0}, Function[p, p + {0, p[[1]]}][b[x - l[[j]][[1]], y - l[[j]][[2]], j]]], {j, 5}]]]];
a[n_] := b[n, 0, 0][[2]];
a /@ Range[0, 20] (* Jean-François Alcover, May 14 2020, after Maple *)
CROSSREFS
Cf. A317985.
Sequence in context: A167137 A279434 A000556 * A125598 A267436 A294215
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 22 2018
STATUS
approved