login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320515
Squarefree k > 1 with sigma(sigma(k)) < 2*k + 1.
2
2, 13, 37, 43, 61, 67, 73, 97, 109, 151, 157, 163, 181, 193, 211, 229, 241, 277, 283, 313, 331, 337, 373, 397, 409, 421, 433, 457, 487, 523, 541, 547, 577, 601, 613, 631, 661, 673, 691, 709, 733, 751, 757, 787, 823, 829, 853, 877, 883, 907, 937, 997
OFFSET
1,1
COMMENTS
Conjecturally a subsequence of A085497.
This conjecture is false, the first counterexample is a(113) = 2257 = 37 * 61 which is the least composite term in this sequence. - Amiram Eldar, Jun 17 2020
LINKS
MAPLE
isA320515 := n -> (n > 1) and issqrfree(n) and (sigma(sigma(n)) < 2*n+1):
select(isA320515, [$1..1000]);
MATHEMATICA
Rest[Select[Range[1000], SquareFreeQ[#] && DivisorSigma[1, DivisorSigma[1, #]] < 2*# + 1 &]] (* Vaclav Kotesovec, Oct 14 2018 *)
PROG
(PARI) isok(n) = (n>1) && issquarefree(n) && (sigma(sigma(n)) < 2*n + 1); \\ Michel Marcus, Oct 14 2018
CROSSREFS
Sequence in context: A338222 A034011 A085497 * A265775 A291205 A005113
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 14 2018
STATUS
approved