login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320518
Zumkeller primes: k is prime and k + 1 is Zumkeller.
3
5, 11, 19, 23, 29, 41, 47, 53, 59, 79, 83, 89, 101, 103, 107, 113, 131, 137, 139, 149, 167, 173, 179, 191, 197, 223, 227, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 317, 347, 349, 353, 359, 367, 379, 383, 389, 401, 419, 431, 439, 443, 461, 463
OFFSET
1,1
LINKS
MAPLE
isZumkellerPrime := n -> isprime(n) and isZumkeller(n+1):
A320518_list := upto -> select(isZumkellerPrime, [$1..upto]): A320518_list(500);
MATHEMATICA
ZumkellerQ[n_] := Module[{d = Divisors[n], ds, x}, ds = Total[d]; If[OddQ[ds], False, SeriesCoefficient[Product[1 + x^i, {i, d}], {x, 0, ds/2}] > 0]];
Select[Prime[Range[100]], ZumkellerQ[# + 1]&] (* Jean-François Alcover, Mar 01 2019 *)
CROSSREFS
Sequence in context: A056996 A102184 A290751 * A084720 A032674 A117089
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 14 2018
STATUS
approved